Total Synthesis of Scytophycin C

Ian Paterson,* Christine Watson, Kap-Sun Yeung, Paul A. Wallace, and Richard A. Ward

University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, U.K.

Received November 26, 1996

The scytophycins, isolated from the cultured terrestrial blue-green alga Scytonema pseudohofmanni, were first reported by Moore et al. in 1986.¹ Apart from scytophycin C (1), four related polyketide-derived² macrolides, scytophycins A, B, D, and E were also isolated.³ Spectroscopic and X-ray crystallographic analysis (performed on an acid degradation product of scytophycin C¹) indicated that the scytophycins are a novel series of polyoxygenated 22membered macrolides, differing in substitution at C_6 , C_{16} , and C₂₇, with a C₂₁ side chain terminating in an N-methylvinylformamide group. They exhibit potent cytotoxicity against a variety of human carcinoma cell lines, as well as broad-spectrum antifungal activity. The scytophycins act as cytotoxic agents by microfilament depolymerization⁴ and have been shown to circumvent P-glycoproteinmediated multidrug resistance in tumor cells,⁵ which gives them therapeutic potential for patients undergoing cancer chemotherapy. As part of our synthetic studies^{6,7} toward these complex bioactive macrolides, we now report the first total synthesis of scytophycin C.

As outlined in Scheme 1, the complete carbon skeleton of scytophycin C (1) in the protected seco acid derivative **2** was anticipated to arise from an aldol-coupling process between the previously prepared $C_1 - C_{18}$ ketone **3**^{6a,b} and the $C_{19}-C_{32}$ aldehyde 4^{6c} under Felkin–Anh control. As with our earlier synthesis of swinholide A,^{8,9} we chose to forego differential hydroxyl protection at C₂₁ and C₂₃. The known acid instability of scytophycin C¹ dictated that the final stages of the synthesis should be performed with caution. The introduction of the N-methyl vinylformamide group, which leads to slowly interconverting conformational isomers,¹ would necessarily be delayed until the end.

By using $BF_3 \cdot OEt_2$ as the Lewis acid in CH_2Cl_2 , the Mukaiyama aldol coupling¹⁰ of the kinetic silyl enol ether derived from ketone **3** with aldehyde **4** gave a single

adduct 5 in 84% yield (Scheme 2), where all but one of the 15 stereocenters of scytophycin C have been installed. Introduction of the remaining C₁₇ stereocenter required chemo- and stereoselective reduction of the β -hydroxy ketone in 5 in the presence of the other ketone group at C₂₇. This was best achieved by using catecholborane,¹¹ where the C₁₇ carbonyl group was activated by formation of a boron chelate followed by *in situ* reduction at -20°C, giving the syn 1,3-diol 6 (85%) with 92% diastereoselectivity, without any competing attack at the C_{27} ketone. Methylation of diol 6 with MeOTf in the presence of 2,6-di-*tert*-butylpyridine¹² then led to 7 (82%), which represented a fully protected seco acid for scytophycin C.

Due to the competing elimination of MeOH at C_{28}/C_{29} encountered in the hydrolysis of the methyl ester in 7, it proved necessary to temporarily reduce the C₂₇ ketone with NaBH₄.¹³ Selective deprotection of the silylene group by brief treatment with HF·py was then followed by clean ester hydrolysis with Ba(OH)₂ in MeOH to afford acid **8** (70%). This seco acid has three possible modes of cyclization to generate 22-, 24-, or 28-membered macrolides. In practice, a modified¹⁴ Yamaguchi macrolactonization¹⁵ of **8** in PhMe (without recourse to high-

^{(1) (}a) Ishibashi, M.; Moore, R. E.; Patterson, G. M. L.; Xu, C.; Clardy, J. *J. Org. Chem.* **1986**, *51*, 5300. (b) Moore, R. E.; Patterson, G. M. L.; Mynderse, J. S.; Barchi, J., Jr.; Norton, T. R.; Furusawa, E.; Furusawa, S. Pure Appl. Chem. 1986, 58, 263.

⁽²⁾ Carmeli, S.; Moore, R. E.; Patterson, G. M. L.; Yoshida, W. Y. Tetrahedron Lett. 1993, 34, 5571.

⁽³⁾ For scytophycins isolated from other species of Scytonema and *Cylindrospermum musicola*, see: (a) Carmeli, S.; Moore, R. E.; Patterson, G. M. L. *J. Nat. Prod.* **1990**, *53*, 1533. (b) Jung, J. H.; Moore, R. E.; Patterson, G. M. L. Phytochemistry 1991, 30, 3615

⁽⁴⁾ Patterson, G. M. L.; Smith, C. D.; Kimura, L. H.; Britten, B.; Carmeli, S. Cell Motil. Cytoskeleton 1993, 24, 39.

⁽⁵⁾ Smith, C. D.; Carmeli, S.; Moore, R. E.; Patterson, G. M. L. Cancer Res. 1993, 53, 1343.

^{(6) (}a) Paterson, I.; Cumming, J. G.; Smith, J. D.; Ward, R. A.; Yeung, K.-S. *Tetrahedron Lett.* **1994**, *35*, 3405. (b) Paterson, I.; Smith, J. D.; Ward, R. A. *Tetrahedron* **1995**, *51*, 9413. (c) Paterson, I.; Yeung, K.-S. Tetrahedron Lett. 1993, 34, 5347. (d) Paterson, I.; Smith, J. D. J. Org. Chem. 1992, 57, 3261

⁽⁷⁾ For a review of synthetic work on bioactive marine macrolides, see: Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041

⁽⁸⁾ The scytophycins are structurally related to the swinholides, a group of *dimeric*, 44-membered macrodiolides from *Theonella swinhoei*. Kitagawa, I.; Kobayashi, M.; Katori, T.; Yamashita, M.; Tanaka, J.; Doi, M.; Ishida, T. J. Am. Chem. Soc. **1990**, 112, 3710.

 ^{(9) (}a) Paterson, I.; Yeung, K.-S.; Ward, R. A.; Smith, J. D.;
 Cumming, J. G.; Lamboley, S. *Tetrahedron* 1995, 51, 9467. (b)
 Paterson, I.; Yeung, K.-S.; Ward, R. A.; Cumming, J. G.; Smith, J. D.
 J. Am. Chem. Soc. 1994, 116, 9391.

⁽¹⁰⁾ Mukaiyama, T. Org. React. 1982, 28, 203.

⁽¹¹⁾ Evans, D. A.; Hoveyda, A. H. J. Org. Chem. 1990, 55, 5190.
(12) Evans, D. A.; Ratz, A. M.; Huff, B. E.; Sheppard, G. S. Tetrahedron Lett. 1994, 35, 7171.

⁽¹³⁾ The configuration shown at the temporary hydroxyl-bearing center at C_{27} in **9** assumes that Felkin–Anh selectivity is operating in the reduction.

⁽¹⁴⁾ Hikota, M.; Sakurai, Y.; Horita, K.; Yonemitsu, O. Tetrahedron Lett. 1990, 31. 6367.

Scheme 2^a

^{*a*} Key: (a) LiN(SiMe₃)₂, Me₃SiCl, Et₃N, THF, -78 °C, 30 min; (b) **4**, BF₃•OEt₂, CH₂Cl₂, -78 °C, 0.5 h; (c) catecholborane, THF, $-20 \rightarrow 20$ °C, 24 h; (d) MeOTf, 2,6-di-*tert*-butylpyridine, 20 °C, 18 h; (e) NaBH₄, MeOH, $-20 \rightarrow 0$ °C, 4 h; (f) HF·py, py, THF, $0 \rightarrow 20$ °C, 1 h; (g) Ba(OH)₂, MeOH, 20 °C, 18 h. (h) Et₃N, 2,4,6-trichlorobenzoyl chloride, DMAP, toluene, 20 °C, 18 h; (i) Ti(O'Pr)₄, CH₂Cl₂, 20 °C, 3 days; (j) TPAP, NMO, 4 Å molecular sieve powder, CH₂Cl₂, 20 °C, 2 h; (k) HF·py, py, THF, $0 \rightarrow 20$ °C, 48 h; (l) TPAP, NMO, 4 Å molecular sieve powder, CH₂Cl₂, 20 °C, 0.5 h.

dilution techniques) proceeded in 90% yield to generate a 42:58 mixture of the 22-membered macrolide **9** and the isomeric 24-membered macrolide **10**. No 28-membered macrolide was detected. We attribute this to the conformational preferences of the molecular backbone, which makes the participation of the hydroxyl at C₂₇ in the cyclization less favored than those at C₂₁ and C₂₃. While other macrolactonization methods, as well as variation of the solvent polarity, were explored,⁹ this modified Yamaguchi procedure was found to be optimum as it gave the highest yield of macrolides.¹⁶ The 24-membered macrolide **10** could be easily equilibrated in favor of the required 22-membered macrolide **9** by transesterification with Ti(O'Pr)₄ in CH₂Cl₂.^{17,18} This gave a separable 70: 30 mixture of **9** and **10** in 91% yield.

It was now necessary to selectively manipulate the side-chain functionality at C_{27} and C_{32} in **9** to reach scytophycin C. First, selective oxidation of the more accessible hydroxyl at C_{27} over that at C_{23} was achieved by TPAP oxidation.¹⁹ This gave ketone **11** (80%), which was then deprotected by extended treatment with HF•py

to provide the triol **12**, along with a mixture of the monodeprotected intermediates (30%) that could be readily recycled. A second selective oxidation using TPAP was then achieved to give the aldehyde **13** with the hydroxyls at C₇ and C₂₃ surviving unscathed. The final step, condensation of *N*-methylformamide with the C₃₂ aldehyde carbonyl group in the presence of the C₂₇ ketone in **13**, proved to be highly challenging due to the acid sensitivity of this system. After considerable effort, we employed P₂O₅ in HNMeCHO²⁰ followed after workup by reversedphase HPLC purification. This gave (–)-scytophycin C (**1**) (20%), which exhibited ¹H and ¹³C NMR, IR, and MS data in accordance with the published values.²¹ This synthetic route should be amenable to the generation of novel scytophycin analogues.

Acknowledgment. We thank the EPSRC (GR/ K54052), Zeneca Pharmaceuticals (CASE Studentship to C.W.), and the Croucher Foundation (Scholarship to K.S.Y.) for their support, Dr. Roger Butlin (Zeneca) for helpful discussions, and Ray Finlay (Cambridge) for NMR assistance.

Supporting Information Available: Experimental procedures and complete spectroscopic data for all compounds (14 pages).

JO962189W

⁽¹⁵⁾ Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. **1979**, *52*, 1989.

⁽¹⁶⁾ In contrast, the corresponding secoacid **2** (*cf.* Scheme 1), where the ketone was reintroduced at C_{27} , completely failed to give any macrolides under the normal Yamaguchi conditions. This is due to hemiacetal formation with the 23-OH, which presumably sterically blocks the 21-OH from acylation.

⁽¹⁷⁾ Kigoshi, H.; Suenaga, K.; Mutou, T.; Ishigaki, T.; Atsumi, T.; Ishiwata, H.; Sakakura, A.; Ogawa, T.; Ojika, M.; Yamada, K. *J. Org. Chem.* **1996**, *61*, 5326.

⁽¹⁸⁾ Seebach, D.; Hungerbühler, E.; Naef, R.; Schnurrenberger, P.; Weidmann, B.; Züger, M. *Synthesis* **1982**, 138.

⁽¹⁹⁾ Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639.

⁽²⁰⁾ Paterson, I.; Cowden, C.; Watson, C. *Synlett* **1996**, 209. (21) Unfortunately, an authentic sample of scytophycin C was not available from the Hawaii group (Dr. G. M. L. Patterson) for direct comparison.